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Abstract—Treatment of a free amino acid ester with CO2 followed by exposure to a chlorosilane-containing polystyrene results
in its attachment to the solid support. The newly formed silyl carbamate can be employed to build polypeptides at the carboxyl
terminus. Cleavage of the (poly)peptide using aqueous HF in CH3CN leads to its free amine form which is isolated as a Boc
derivative. The polymer support can be easily recycled. © 2001 Elsevier Science Ltd. All rights reserved.

With the advent of combinatorial chemistry, a renais-
sance in solid-phase organic synthesis (SPOS) is taking
place. Closely associated with these advances are
numerous developments in available linkers,1 which
contain various functionality and are usually modeled
on solution-based protecting groups. Many linkers,
therefore, are dependent upon silicon,2 which is sepa-
rated from a polymer backbone by a spacer group (Fig.
1). Cleavage of the desired product from a silyl linker
frequently results from acid-induced protiodesilylation
of a (substituted) aromatic ring3 or otherwise activated
silane (e.g. benzylic,4 allylic,5 etc.), or via net hydrolysis
of a silyl ether.6,7 Based on our recent report introduc-
ing Tsoc and its TBDPS analog as new protecting
groups for nitrogen,8a we envisioned the carbamate
within 1 functioning as a new linker which upon cleav-
age under the influence of fluoride ion would leave

behind a hydrogen on nitrogen.8b We now describe this
novel addition to the arsenal of SPOS, in this case as
applied to unconventional N-linked polypeptide
synthesis.9

Unlike traditional solid-phase peptide synthesis, an
approach which proceeds in the reverse direction (i.e.
N�C) leads directly to C-terminally protected/modified
products.9 Use of an N-bound silyl carbamate linker
was anticipated to offer several advantages, including:
(1) commercial availability of bromopolystyrene; (2) no
requirement for a formal spacer group; (3) mild
fluoride-based cleavage of the polypeptide from the
resin; (4) minimal loss of stereochemical integrity
throughout the sequence; and (5) ready recycling of the
polymer.

Figure 1.
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In practice, para-bromopolystyrene (1% crosslinked,
200–400 mesh, 2.6 mmol/g)10 could be lithiated and
quenched with (i-Pr)2SiCl211 to afford silyl chloride 2
(Scheme 1). Upon exposure of amines 3a–g to gaseous
CO2 in CH2Cl28a followed by trapping of the intermedi-
ate salt with polymer-bound silyl chloride 2, the corre-
sponding silyl carbamates 4 were gradually formed.
Release of the amine from 4 was found to occur
smoothly using aqueous HF (3–4 equiv.) in CH3CN at
room temperature.12 Among the amines mounted via
the corresponding silyl carbamate, a fluorenylmethyl
(Fm) ester of proline (4e) was found to readily undergo
conversion to the free acid upon treatment with pyrro-
lidine in CH2Cl2 at room temperature. In general, how-
ever, Fm esters were very sensitive to base; hence,
amino acids were best introduced as their allyl ester
derivatives (e.g. 4d and 4f). These derivatives could be
unmasked to the free carboxyl using catalytic Pd(0) in
the presence of excess morpholine13 or Me2NH·BH3.14

Benzyl esters were examined, and while these under-
went clean removal using Pd(0)/Et3SiH in model com-
pounds tested in solution (as their Tsoc derivatives), the
polystyrene mounted analogs led to essentially no
reaction.

Activation of amino acids 5 was found to be most
efficient using traditional i-butyl chloroformate/N-
methylmorpholine15 (NMM; Scheme 2). Other standard

conditions investigated (e.g. DCC, DMAP; HBTU,
HOBT, DIPEA; HOBT, DIPCDI)16 were less effective.
Subsequent couplings with a methyl or allyl ester of
phenylalanine or phenylglycine occurred smoothly.
Treatment of silyl carbamates 6 with HF/CH3CN fol-
lowed by (Boc)2O led to fully protected dipeptides 7a–c
in good overall isolated yields from 4d–f, the optical
rotation of each indicating that no loss in stereochemi-
cal integrity had occurred throughout the sequence.

The two-step cycle (i.e. ester cleavage, then coupling)
could be applied twice to educts 4d and 4f (Scheme 3),
giving rise to polymer-bound tripeptide allyl esters 8,
10, and 12. Final release from the polymer and N-pro-
tection afforded N-Boc tripeptide esters 9, 11, and 13 in
good overall yields from the starting carbamates (4d
and 4f). The stereopurity of each product was excellent
based on comparisons with authentic materials.17 Note-
worthy is the observation that incorporation of a
phenylglycine residue was easily accommodated with-
out losses due to epimerization.

By way of comparison, the diphenylsilyl analog 14 of
diisopropylsilyl carbamate 4d was tested (Scheme 4),
using the same sequence as depicted in Scheme 3 (i.e.
acid deprotection and then coupling, done twice, then
cleavage from the resin and N-Boc protection). Overall,
the yield of tripeptide 9 was 15% lower, suggesting that

Scheme 1.
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Scheme 2.

Scheme 3.

this derivative offers no obvious advantage over the
diisopropyl-substituted case (cf. overall yield for the
conversion of 4d to 9 in Scheme 3).

Release of a (poly)peptide from the resin using HF led

to the derived silyl fluoride 16, which can be efficiently
recycled upon treatment with BCl3 in CH2Cl2 at room
temperature (Scheme 5).18 Exposure of the carbamate salt
derived from phenylalanine methyl ester to regenerated
resin 2 gave the expected carbamate-derived product 17.
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Scheme 4.

Scheme 5.

In summary, a novel silyl carbamate linker19 has been
developed which has been demonstrated for reverse
(N�C) direction solid-phase peptide synthesis. Overall
efficiencies are good, and the purities of the final prod-
ucts are excellent. Cleavage of the free amine moiety
from the resin occurs under mild fluoride-mediated
conditions, leaving behind only CO2 as by-product.
That the solid support can be readily recycled to the
active silyl chloride is a particularly noteworthy feature.
Other uses of this silyl linker in SPOS involving amines
are envisioned and will be reported in due course.
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